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The Problem
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● Build generalizable ADMET predictors

● from datasets with varying sizes & 
diversity for several ADMET endpoints

● Learn & predict the endpoints 
simultaneously
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The Problem
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Multi-Task Graph Neural Network (GNN) Model
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● GNN can in theory produce expressive representations
● Sub-optimal representations due to small ADMET datasets

Atom Embeddings

GNN

GC: Graph Convolution
MLP: Multi-Layer Perceptron
Readout is a pooling operation: sum or mean
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Mitigation: Pre-Training
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Multi-Task Graph Neural Network (GNN) Model
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Atom Embeddings

GNN

GC: Graph Convolution
MLP: Multi-Layer Perceptron
Readout is a pooling operation on atom embeddings: sum or mean (we use sum)
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Examples of Self-Supervised Learning

• Context Prediction of Atoms (GNN-based)
• Hu, Weihua, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec. 

2019. “Strategies for Pre-Training Graph Neural Networks.” arXiv [cs.LG]. arXiv. 
http://arxiv.org/abs/1905.12265.

• Rong, Yu, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou Huang. 2020. 
“Self-Supervised Graph Transformer on Large-Scale Molecular Data.” Advances in Neural Information 
Processing Systems 33.

• Data Augmentation & Contrastive Loss (GNN-based)
• Wang, Yuyang, Jianren Wang, Zhonglin Cao, and Amir Barati Farimani. 2021. “MolCLR: Molecular 

Contrastive Learning of Representations via Graph Neural Networks.” arXiv [cs.LG]. arXiv. 
http://arxiv.org/abs/2102.10056.

• Language Models (LSTM-based)
• Winter, Robin, Floriane Montanari, Frank Noé, and Djork-Arné Clevert. n.d. “Learning Continuous and 

Data-Driven Molecular Descriptors by Translating Equivalent Chemical Representations.” 
https://doi.org/10.26434/chemrxiv.6871628.v1.
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Recent publications

http://arxiv.org/abs/1905.12265
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A simpler pre-training strategy ...
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Model Pre-training
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Learns thousands of pre-training tasks
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Sub-structures provide full coverage
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Out of the 5k output subgraphs:
● 72 were found to be present in this molecule
● And they fully cover/describe the molecule
● Therefore, the embeddings that encode for these outputs, 

are very accurate representation of the molecule
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Model Pre-training
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Learns thousands of pre-training tasks
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Model Fine-tuning
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Fine-tune the pre-trained model on downstream tasks (ADMET)
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Pre-training Data
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Millions of diverse compounds from public and commercial sources
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Can a GNN learn thousands of tasks?
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Embedding Size: 512 Embedding Size: 64
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Can a GNN learn thousands of tasks?
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Regression labels are standardized



© 2021 Atomwise

Clustering with the learned embeddings
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Clustering: ECFP vs. GNN Embedding
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ECFP GNN 
Embedding
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2D Embedding
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How different embedding methods compare?
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ECFP PT-GNN CDDD GROVER

0.51 0.42 0.49 0.38

0.44 0.33 0.40 0.39

0.60 0.51 0.70 0.54

... ... ... ...

0.30 0.23 0.19 0.25

Pairwise 
distances

All-to-all 
correlation

column-wise
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Average Performance on 20 ADMET Endpoints
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10%
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Ranking Performance: Classification
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Ranking Performance: Regression
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•Pre-training tasks align with human 
intuition 

•Learning them forces the model to 
generate meaningful embeddings

•Generated embeddings are 
predictive for ADME

•Simple & effective
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Key takeaways
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