“We knew we had to be smarter, and that we had to have more shots on goal to be successful,” he says. That’s why MacKeigan and his team are working closely with Atomwise in their quest to understand cancer cell biology and cell signaling.
MacKeigan, who serves as assistant dean for research at Michigan State University College of Human Medicine, has been fascinated with the process of autophagy since his postdoc. This natural cycle, which is regulated by the protein kinase mTOR, is turned on when cells lack the energy and nutrients to grow. Autophagy allows cells to hunker down and recycle proteins, fatty acids, and nucleic acids. MacKeigan’s lab focuses on cancer, and his team is eager to learn how mTOR and autophagy function in different cancer contexts.
“Cancer can be caused by many mutations,” MacKeigan says. “We’re trying to understand the genetic context of when to therapeutically target this autophagy pathway.”
So he got creative and reached out to Atomwise. “We talked about the diversity of targets within the autophagy pathway that lacked small molecules,” he says. “There are very druggable targets such as kinases, and then proteases and protein-protein interactions which are harder to target.”
“In industry, traditional large-scale chemical screens take months and millions of dollars to complete,” MacKeigan says. “With Atomwise’s ability to virtually screen those compounds, you can do that in much more rapid succession.”
For each project, the scientists submitted their target along with X-ray and cryogenic electron microscopy structures. “Atomwise ran AI-based structural screening for compounds, and they also did counter screens against similar molecules to drive selectivity,” MacKeigan says. Using this strategy for the virtual screen helps to ensure that resulting compounds not only show strong on-target activity, but also minimal off-target effects.
In the short term, MacKeigan plans to use any successful candidates as molecular tools to help elucidate the autophagy pathway, particularly as it relates to cancer. Ultimately, he hopes that one of these compounds, or a compound informed by his lab’s work, could one day be validated in preclinical and clinical processes for inhibiting the pathway in cancer patients.
For MacKeigan, the real prize is making an important contribution to the scientific community’s understanding of autophagy. He says, “academic labs are set up to understand the exquisite complexity of this pathway -- and that’s just what we aim to do.”